TEACHING PLAN FOR EVEN SEMETER Jan-2022-July 2022

Paper Code: C2.2

Name of the Faculty: Mr. Dulal Baruah, M.Sc. MPhil.

Department: Mathematics

Semester: B.A. 2nd Semester (Honours) (CBCS)
Paper Name: Differential Equation

Contact Hour(s): 35 Hrs.

Objectives: After going through this course the students will be able to

• Use the techniques to solve differential equations.

• Apply these techniques in various mathematical models used in real life problems.

	Г		1
Sl. No.	Topics (As per University Syllabus)	Hours	Remarks/Books
1	General solution of homogeneous equation of second order	3	Books:
2	1	3	C.I. Dogg Differential
	principle of super position for homogeneous equation	3	S.L. Ross, Differential Equations, 3rd Ed.,
3	Wronskian: its properties and	3	Equations, 51 a Ea.,
3	applications	3	
4	Linear homogeneous and non-	5	1
1	homogeneous equations of higher		
	Euler's equation, method of	4	-
	undetermined coefficients, method of	_	
	Evaluation of the Unit (problem	5	1
	practice)		
5	Tutorial	2	
	Total	25 Hrs	
	Unit-4 Mar	ks: 10	Contact hrs: 10
6	Equilibrium points	1	
			Book:
7	Interpretation of the phase plane	2	
		_	E. A. Codding ton, An
8	predatory-prey model and its analysis	2	Introduction to Ordinary
		1	Differential Equation,
9	Epidemic model of influenza and its analysis,	1	
10	Battle model and its analysis	1	-
10	Battle model and its analysis	1	
11	Evaluation of the Unit (problem	2	1
	practice)		
12	Tutorial	1	
	Total	10 Hrs	

Teaching Plan

Department of Mathematics Session: 2022-23(Jul-Dec)

Name of the Teacher: Dr. Abhijit Mukherjee BA. 5th Semester(Hons: Mathematics) Allotted Paper: C 5.1 (Multivariate Calculus)

Objective: After going through this course the students will be able to:

- 1)Extend the concepts from one variable calculus to function of several variables
- 2) Demonstrate the ability to think critically and solving application of real world problems involving double/triple integrals

integrals Paper/Unit	Detailed Teaching Plan	Teaching Hours Required
	Functions of several variables, limit and continuity of functions of two variables.	3
	Partial differentiation, total differentiability and differentiability.	3
	3. Sufficient condition for differentiability. Chain rule for one and two independent parameters.	4
Unit-I	Directional derivatives, the gradient, maximal and normal property of the gradient.	5
	5. Tangent planes, Extrema of functions of two variables.	4
	Method of Lagrange multipliers, constrained optimization problems.	4
	7. Definition of vector field, divergence and curl.	5
	8. Tutorial.	2
	Double integration over rectangular region, double integration over non-rectangular region.	4
	2. Double integrals in polar co-ordinates.	3
Unit-II	3. Triple integrals, Triple integral over a parallelepiped and solid regions.	4
	4. Volume by triple integrals .	3
	5. Cylindrical and spherical co-ordinates.	4
	6. Tutorial	2
Unit-III	Change of variables in double integrals and triple integrals.	6

	2. Line integrals, Applications of line integrals: Mass and work.	6
	3. Fundamental theorem for line integrals.	3
	4. Conservative vector fields, independence of path.	3
	5. Tutorial	2
	1. Green's theorem.	5
	Surface integrals, integrals over parametrically defined surfaces.	4
Unit-IV	3. Stoke's theorem.	5
	4. Divergence Theorem	4
	5. Tutorial	2

Teaching Plan Department of Mathematics Session: 2022-23(Jul-Dec)

Name of the Teacher: Dr. Abhijit Mukherjee BA. 3rd Semester(Hons: Mathematics) Allotted Paper: C 3.1 (Theory of Real Functions)

Objective: After going through this course the students will be able to:

1) Discuss limit, continuity and differentiability of real valued functions

2)Expand functions in series and different form of remainders

Paper/Unit	Detailed Teaching Plan	Teaching Hours Required
	Limits of functions (approach), sequential criterion for limits, divergence criteria.	4
	Limit theorems, one sided limits.Infinite limits and limits at infinity.	5
Unit-I	Continuous functions, sequential criterion for continuity and discontinuity.	4
	4. Algebra of continuous functions. Continuous functions on an interval.	4
	5. Intermediate value theorem, location of roots theorem, preservation of intervals theorem.	5
	6. Uniform continuity, non-uniform continuity criteria, uniform	6

	continuity theorem.	
,	7. Tutorial	2
	Differentiability of a function at a point and in an interval	5
	Caratheodory's theorem, algebra of differentiable functions.	5
	3. Relative extrema, interior extremum theorem.	5
Unit-II	4. Rolle's theorem, Mean value theorem, intermediate value property of derivatives, Darboux's theorem	8
	5. Applications of mean value theorem to inequalities and approximation of polynomials, Taylor's theorem to inequalities.	5
	6. Tutorial	2
	1. Cauchy's mean value theorem.	3
	Taylor's theorem with Lagrange's form of remainder, Taylor's theorem with Cauchy's form of remainder	7
Unit-III	Application of Taylor's theorem to convex functions, relative extrema.	7
	4. Taylor's series and Maclaurin's series expansions of exponential and trigonometric functions, ln(1 + x), 1/ax+b and (1 +x)n	8
	5. Tutorial	5

Teaching Plan Department of Mathematics Session: 2022-23(Jul-Dec)

Name of the Teacher: Dr. Abhijit Mukherjee BA. 1ST Semester(Generic: Mathematics) Allotted Paper: GE-1.1 (Differential Calculus)

Objective: After going through this course the students will be able to:

1) Differentiate functions

2) Find tangent normal, curvature, asymptotes etc.

Paper/Unit	Detailed Teaching Plan	Teaching Hours
		Required

	1. Tangents and normals	4
	2. Curvature, Asymptotes, Singular points	8
	3. Tracing of curves	8
Unit-II	4. Parametric representation of curves and tracing of parametric curves	4
	5. Polar coordinates and tracing of curves in polar coordinates	4
	6. Tutorial	2

Women's College, Tinsukia

TEACHING PLAN

Name of the teacher: SANGEETA GOHAIN BORUAH

Subject : Mathematics

Session : Odd Semester, 2022

Allotted Paper Code/Title	Method to be applied	Teaching material	Unit	Topic	Period required Class + test	Time In hour
C3.2 Group Theory I	Discussion on the topic, solving examples & problems, after completion a class	Text book, reference book, black board, e- learning	Unit-1 Marks:15	Definition and examples of groups including permutation groups and quaternion groups (illustration through matrices)	6+1	6
	test on that topic			Elementary properties of groups.	3+ 1	4
				Symmetries of a square, Dihedral groups	4+1	5
			Unit-II Marks:15	Subgroups and examples of subgroups,	4+1	5
				Centralizer, normalizer, center of a group	4 +1	5
				Product of two subgroups.	3 + 1	4
			Unit-3 Marks:20	Properties of cyclic groups Classification of subgroups of cyclic groups.	3+1	4
				Cycle notation for permutations, properties of permutations, even and odd permutations	3+1	4
				Alternating group, properties of cosets	2 + 1	3
				Lagrange's theorem and consequences including Fermat's Little theorem.	5+1	6
			Unit-4 Marks:15	External direct product of a finite number of groups	3+1	4
				Normal subgroups, factor groups	4 + 1	5
				Cauchy's theorem for finite abelian groups.	4 + 1	5
			Unit-5 Marks:15	Group homomorphisms, properties of homomorphisms,	4+1	5
			WIGHNS.ID	Cayley's theorem, properties of	4+1	5
				isomorphisms, First, Second and Third isomorphism theorems. convergence.	4 + 1 4 + 1	5 5

Allotted Paper Code/Title	Method to be applied	Teaching material	Unit	Topic	Period required Class + test	Time In hour
C5.2 Group Theory-II			Unit-1 Marks: 30	Automorphism, inner automorphism	3+1	4
,				Automorphism groups, automorphism groups of finite and infinite cyclic groups	5+1	6
				Applications of factor groups to automorphism groups	5+1	6
				Characteristic subgroups, Commutator subgroup and its properties.	5+1	6
			Unit-2 Marks: 20	Properties of external direct products,	5 + 1	6
				The group of units modulo n as an external direct product	3 + 1	4
				Internal direct products Fundamental Theorem of finite abelian groups.	3+1 3+1	4
			Unit-3 Marks: 30	Groups acting on themselves by conjugation	3 + 1	4
				Class equation and consequences Conjugacy in Sn	4+1	5
				p-groups, Sylow's theorems and consequences	4+1	5
				Cauchy's theorem, Simplicity of Anfor $n \ge 5$, non-simplicity tests.	4+1	5
				Rolle's theorem	3+1	4
GE-1.1			Unit-3	Mean Value theorems	3 + 1	4
Differential Calculus			Marks: 30	Taylor's theorem with Lagrange's and Cauchy's forms of remainder	3 + 1	4
				Taylor's series, Maclaurin's series	3 + 1	4
				of sin x, cos x, ex, log(l+x), (l+x)m,	6+1	7
				Maxima and Minima, Indeterminate forms.	5+1	6

• Name of the Faculty: Dr. Bandita Phukan

• Department : Mathematics

Semester: B.A. 5 th Semester (Honours) Paper Name: Number Theory Allotted Hour(s)of Lecture: (72+18) Hours			Total No. of Students: 01 Paper Code: DSE-2 Actual Hour(s): (72+18) Hours				
Sl. No.	Class Topics (As per University Syllabus)			Remarks/Books			
Unit – I							
1	1 & 2	Linear Diophantine equation	2				
2	3,4& 5	prime counting function	3				
3	6 &7	statement of prime number theorem	2				
4	8, 9 & 10	Goldbach conjecture	3	Elementary Number Theory			
5	11,12,13& 14	linear congruences	4	By D. M. Burton			
6	15,16,17& 18	complete set of residues	4	A.C			
7	19,20,21, &22	Chinese Remainder theorem	4	A first course in Number theory By			
8	23,24&25	Fermat's Little theorem	3	K. C. Choudhury			
9	26,27&28	Wilson's theorem	3				
10	29,30	Review/Remedial class	2				
Unit – II							
11	31 & 32	Number theoretic functions	2				
12	33,34 & 35	sum and number of divisors	3	Elementary Number			
13	36,37 & 38	totally multiplicative functions	3	Theory			

14	39,40&41	definition and properties of the Dirichlet product	3	Ву
15	42,43& 44	The Mobius Inversion formula	3	D. M. Burton
16	45, 46 &47	The greatest integer function	3	
17	48,49 & 50	Euler's phi- function	3	A first course in Number theory
18	51,52 & 53	Euler's theorem	3	By
19	54, 55& 56	reduced set of residues	3	K. C. Choudhury
20	57,58&59	some properties of Euler's phi-function	3	
21	60	Review/Remedial class	1	
		UNIT III		
			_	
22	61 & 62	Order of an integer modulo n	2	
23	63 & 64	Primitive roots for primes	2	
24	65,66 & 67	Composite numbers having primitive roots	3	
25	68	Euler's criterion	1	Elementary Number
26	69&70	The Legendre symbol and its properties	2	- Theory By
27	71,72, 73&74	Quadratic reciprocity	4	D. M. Burton
28	75,76,77&78	Quadratic congruences with composite moduli	4	A first course in
29	79,80&81	Public key encryption	3	Number theory
30	82,83&84	RSA encryption and decryption	3	- By K. C. Choudhury
31	85 &86	The equation $x^2 + y^2 = z^2$	2	
32	87,88&89	Fermat's Last theorem	3	
33	90	Review/Remedial class	1	

Semester: B.A. 3rd Semester (Honours) Total No. of Students: 03

Paper Name: PDE and Systems of ODE Paper Code: C.3.3

Allotted Hour(s)of Lecture: (60+30) Hours Actual Hour(s): (60+30) Hours

Allotted Hour(s) of Lecture: (60+30) Hours Actual Hour(s): (60+30) Hours						
Sl. No.	Class	Topics (As per University Syllabus)	Hrs.	Remarks/Books		
Unit – I						
1	1,2 &3	Partial Differential Equations – Basic concepts and Definitions, Mathematical Problems.	3			
2	4,5,6 &7	First- Order Equations: Classification, Construction and Geometrical Interpretation.	4			
3	8 &9	Method of Characteristics for obtaining General Solution of Quasi Linear Equations.	2	Elements of Partial Differential Equations		
4	10	Non-linear partial differential equations	1	Ву		
5	11,12,13& 14	Charpit's method	4	I. N. Sneddon		
6	15,16 &17	Jacobi's method	3	Partial Differential		
7	18,19,20 &21	Canonical Forms of First-order Linear Equations.	4	Equation for Scientists and Engineers,		
8	22,23 &24	Method of Separation of Variables for solving first order partial differential equations.	3	by T. Myint-U and		
9	25	Review/Remedial class	1	LokenathDebnath,		
Unit – II						
10	26 & 27	Classifications of second order linear equations as hyperbolic, parabolic or elliptic.	2	Differential equations By		
11	28	Derivations of Heat equation,	1	S.L. Ross (Chapter 14.1,14.3)		
12	29	Derivations of Wave equation	1			

13	30	Derivations of Laplace equation	1			
14	31 & 32	Solutions of Heat equation, Wave equation and Laplace equation	2			
15	33 & 34	Reduction of second order Linear Equations to canonical forms.	2			
16	35	Review/Remedial class	1			
Unit – III						
17	36, 37& 38	Method of separation of variables,	3	Advanced Partial		
18	39, 40 &41	Solving the Vibrating String Problem,	3	Differential Equations by		
19	42, 43& 44	Solving the Heat Conduction problem	3	M. D. Raisinghania		
20	45	Review/Remedial class	1			
Unit – IV						
21	46	Systems of linear differential equations, types of linear systems	1			
22	47	differential operators	1			
23	48 & 49	an operator method for linear systems with constant coefficients	2			
24	50 & 51	Basic Theory of linear systems in normal form	2	Differential equations		
25	52 & 53	homogeneous linear systems with constant coefficients: Two Equations in two unknown functions	2	By S.L. Ross		
26	54	The method of successive approximations	1	(Chapter 7.1 –7.4;		
27	55 & 56	Euler method	2	8.3,8.4)		
28	57	Modified Euler method	1			
29	58& 59	The Runge-Kutta method upto fourth order approximation.	2			
30	60	Review/Remedial class	1			

		Practical	
31	46	Solution of Cauchy problem for first order PDE.	5
32	47	Finding the characteristics for the first order PDE	6
33	48 & 49	Plot the integral surfaces of a given first order PDE with initial data.	6
34	50 & 51	Solution of the wave equation $\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$	7
		for some associated conditions.	
35	52 & 53	Solution of wave equation $\frac{\partial u}{\partial t} - k^2 \frac{\partial^2 u}{\partial x^2} = 0$ for	6
		some associated conditions.	

• Name of the Faculty: Dr. Bandita Phukan

• Department : Mathematics

Semester: B.A. 1st Semester Total No. of Students: 02

Paper Name: Differential Calculus Paper Code: GE:1.1

Allotted Hour(s)of Lecture: (24+6) Hours Actual Hour(s): (24+6) Hours

Sl. No.	Class	Topics (As per University Syllabus)	Hrs.	Remarks/Books			
	Unit – I						
1	1,2 &3	Limit and Continuity (ϵ and δ definition)	4				
2	4,5,6 &7	Types of discontinuities	4				
3	8 &9	Differentiability of functions	4	Calculus			
4	10	Successive differentiation	4	by H. Anton, I. Birens and S. Davis			
5	11,12,13& 14	Leibnitz's theorem	4				
6	15,16 &17	Partial differentiation	5				
7	18,19,20 &21	Euler's theorem on homogeneous functions.	4				
8	22	Review/Remedial class	1				